C18	$0.4513(5)$	$0.4552(5)$	$0.3522(5)$	$0.072(2)$
C19	$0.6364(6)$	$0.4106(5)$	$0.2859(5)$	$0.091(2)$
O1	$0.3601(4)$	$-0.0575(4)$	$0.6711(4)$	$0.086(2)$
O2	$0.2555(3)$	$0.1988(3)$	$0.2318(3)$	$0.0597(12)$

Table 5. Selected geometric parameters $\left({ }^{\AA},{ }^{\circ}\right)$ for (II)

$\mathrm{N} 1-\mathrm{C} 2$	1.379 (6)	C7-C18	1.523 (7)
$\mathrm{N} 1-\mathrm{C8a}$	1.379 (6)	C7-C19	1.529 (7)
C2-C3	1.369 (6)	C7-C8	1.531 (7)
C2-C9	1.522 (6)	C8-C8a	1.496 (6)
C3-C10	1.450 (7)	$\mathrm{Cl} 0-\mathrm{OI}$	1.227 (6)
C3-C4	1.530 (6)	C10-Cll	1.519 (7)
C4-C4a	1.504 (7)	C12-C17	1.382 (7)
C4-- Cl^{2}	1.526 (7)	C12-C13	1.394 (7)
C4a-C8a	1.355 (6)	C13-C14	1.357 (8)
C4a-C5	1.453 (7)	C14-C15	1.359 (10)
C5-02	1.244 (5)	C15-C16	1.388 (9)
C5-C6	1.495 (7)	C16-C17	1.386 (8)
C6-C7	1.553 (7)		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8 \mathrm{a}$	122.7 (5)	C4a-C8a-N1	118.9 (5)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	120.2 (5)	C4a-C8a-C8	124.9 (5)
C2-C3-C4	119.3 (5)	$\mathrm{Ol}-\mathrm{Cl0}-\mathrm{Cl1}$	116.6 (6)
C4a-C4-C3	110.6 (4)	C17-C12-C13	118.0 (6)
C8a-C4a-C5	119.4 (5)	$\mathrm{C} 14-\mathrm{Cl3-C12}$	121.1 (7)
C8a-C4a-C4	121.5 (5)	C13-C14-C15	121.1 (8)
C4a-C5-C6	117.2 (5)	C14-C15-C16	119.3 (8)
C5-C6-C7	114.6 (5)	C17-C16-C15	119.9 (8)
C8-C7-C6	106.5 (5)	C12-C17-C16	120.6 (7)
C8a-C8-C7	113.1 (5)		
C8a-N1-C2-C3	-14.5 (8)	C6-C7-C8-C8a	-47.2 (6)
C9-C2-C3-C10	0.6 (8)	C4-C4a-C8a-NI	10.1 (8)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-5.2 (8)	C5-C4a-C8a-C8	5.4 (8)
C2-C3-C4-C4a	23.8 (7)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8 \mathrm{a}-\mathrm{C} 4 \mathrm{a}$	12.2 (8)
C3-C4-C4a-C8a	-26.6 (7)	C7-C8-C8a-C4a	19.8 (8)
C8a-C4a-C5-C6	2.0 (8)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{O1}$	0.4 (9)
C4a-C5-C6-C7	-34.1 (7)	C4a-C4-C12-C17	-75.9 (7)
C5-C6-C7-C8	55.6 (6)	C4a-C4-C12-C13	103.6 (6)

Table 6. Hydrogen-bonding geometry $\left({ }^{(},{ }^{\circ}\right)$ for (II)

$D — \mathrm{H} \cdots A$	$D-\mathbf{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} \cdots 2^{1}$	$0.83(5)$	$2.07(5)$	$2.864(8)$	$160(5)$

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.
The structures were solved by direct methods and Fourier synthesis. Non-H atoms were refined anisotropically by fullmatrix least-squares techniques. H atoms were calculated geometrically and were refined riding with common isotropic displacement parameters, except for $\mathbf{H}(1)$ which was refined isotropically in both structures.
Data collection: CAD-4 Software (Enraf-Nonius, 1994). Cell refinement: CRYSDA (DIRDIF; Beurskens et al., 1992). Data reduction: REFLEX (local program). Program used to solve structure: SHELXS86 (Sheldrick, 1990). Program used to refined structure: SHELXL93 (Sheldrick, 1993). Geometrical calculations: PARST (Nardelli, 1983). Molecular graphics: EUCLID (Spek, 1982). Software used to prepare material for publication: SHELXL93.

We would like to acknowledge financial support of the Ministry of Science and Education of Spain for the sabbatical leave to ADM (sab95-0182).

[^0]
References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarcíaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallographic Laboratory, University of Nijmegen, The Netherlands.
Bosert, F. \& Vater, W. (1989). Med. Res. Rev. 9, 291-324.
Enraf-Nonius (1994). CAD-4-Express Software. Enraf-Nonius, Delft, The Netherlands.
Goldmann, S. \& Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559-1578.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Martín-León, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suárez, M., Ochoa, E., Morales, A. \& Bosque, J. (1995). J. Heterocycl. Chem. 32, 235-238.
Martín-León, N. \& Seoane, C. (1990). Quim. Ind. 36, 115-127.
Rose, U. \& Dräguer, M. (1992). J. Med. Chem. 35, 2238-2243.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1982). The EUCLID Package. Computational Crystallography, edited by D. Sayre, p. 528, Oxford: Clarendon Press.

Acta Cryst. (1996). C52, 2359-2363

The Anhydrous Racemate of the Carcinostatic Agent Cyclophosphamide and the Bicyclic Degradation Product 1-(2-Chloroethyl)tetrahydro-1H,5H-1,3,2-diaza-phospholo[2,1-b][1,3,2]oxazaphosphorine 9-Oxide

Peter G. Jones, ${ }^{a}$ Holger Thönnessen, ${ }^{a}$ Axel Fischer, ${ }^{a}$ Ion Neda, ${ }^{a}$ Reinhard Schmutzler, ${ }^{a}$ Jürgen Engel, ${ }^{b}$ Bernhard Kutscher ${ }^{b}$ and Ulf Niemeyer ${ }^{b}$
${ }^{a}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{b}$ ASTA Medica AG, Weismüllerstr. 45, 60314 Frankfurt, Germany. E-mail: p. jones@tu-bs.de
(Received 7 March 1996; accepted 15 April 1996)

Abstract

Anhydrous racemic cyclophosphamide, $[(\pm)$ - N, N-bis(2-chloroethyl)-tetrahydro-2H-1,3,2-oxazaphosphorin-2amine 2-oxide, $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$, (1)], displays a chair conformation with an axial phosphoryl O atom and approximately planar geometry at the N atoms. The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ hydrogen bonds into chains. One chloroethyl side chain is extended, the other is gauche. The $\mathrm{C}-\mathrm{Cl}$ bond lengths are $\mathrm{Cll}-$ C5 1.789 (2) and Cl2-C7 1.791 (2) A. The bicyclic degradation product, 1-(2-chloroethyl)tetrahydro- $1 \mathrm{H}, 5 \mathrm{H}$ -1,3,2-diazaphospholo[2,1-b][1,3,2]oxazaphosphorine 9-
oxide, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{P}$, (2), is formed by intramolecular alkylation at the ring N atom of (1). The major change of bond length upon annelation is observed for P N 2 , the ring $\mathrm{P}-\mathrm{N}$ bond in (1), which is lengthened from 1.633 (2) to 1.6593 (14) A. The angle $\mathrm{N} 1-\mathrm{P}-\mathrm{N} 2$, incorporated into the five-membered ring in (2), narrows from 105.84 (8) to $97.36(7)^{\circ}$. The remaining chloroethyl side chain is gauche. The $\mathrm{C}-\mathrm{Cl}$ bond length is 1.790 (2) A.

Comment

Cyclophosphamide, in the form of its monohydrate, is a well known carcinostatic agent (see e.g. Brock, 1989).

The structure of racemic cyclophosphamide was previously known only for this monohydrate which crystallizes in $P \overline{1}$ and was investigated independently by García-Blanco \& Perales (1972) and Clardy, Mosbo \& Verkade (1972, 1974). Hydrogen bonds of the form O (water)- $\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ (two) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (water) connect the molecules in ribbons parallel to the short ($6 \AA$) axis (García-Blanco \& Perales, 1972; here we quote values only from this source). The chloroethyl side chains display an extended conformation with $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ torsion angles of -177 and 176°; the corresponding P-$\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles are 102 and 92°. The $\mathrm{P}-\mathrm{N}$ bond lengths are 1.625 (5) (ring) and 1.630 (4) \AA (exocyclic). The $\mathrm{C}-\mathrm{Cl}$ bond lengths are 1.784 (6) and 1.794 (6) \AA; cleavage of these bonds has been postulated as an important part of the mechanism for intramolecular alkylation (Zon, Ludeman \& Egan, 1977).

The structure of anhydrous $R-(+)$-cyclophosphamide was determined by Karle, Karle, Egan, Zon \& Brandt (1977) and that of the opposite $S-(-)$ enantiomer by Adamiak, Kinas, Saenger \& Stec (1977a,b). The space group is $R 3$, although the latter determination was based on a triclinic cell (that can however be transformed to rhombohedral). Hydrogen bonds of the form N$\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ link the molecules in trimers around the threefold axis. The $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ groups are extended (torsion angles 180, 176°; all values quoted are from Karle et al., 1977), but the signs of the corresponding $\mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles are now different at 105, -100°. The $\mathrm{C}-\mathrm{Cl}$ bond lengths were determined as 1.81 and $1.92 \AA$; the latter is extremely long and it was suggested that the Cl atom was dissociating from the molecule. However, the high displacement parameters of the corresponding chloroethyl C atoms may indicate some disorder phenomenon.

Here we report the structure of the anhydrous racemate of cyclophosphamide, (1) (Fig. 1; the crystallographic numbering does not correspond to the IUPAC name). In common with the other determinations are the expected chair conformation of the ring, the axial phosphoryl O atom and approximately planar geometry at the N atoms. Bond lengths and angles are similar to those in the other determinations, but the ring is less
flat (absolute values of torsion angles in the fragment $\mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ are on average 8° greater than in the (+) isomer and 5° greater than in the hydrate).

(1)
$-\mathrm{HCl}$

The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ hydrogen bonds into chains parallel to the y axis (Fig. 2), with $\mathrm{N} 2 \cdots \mathrm{Ol}^{\mathrm{i}} 2.846(2), \mathrm{N} 2-\mathrm{H} 2^{\prime} 0.79(2), \mathrm{H} 2^{\prime} \cdots \mathrm{Ol}$ $2.16(2) \AA$ and $\mathrm{N} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{Ol}^{\mathrm{i}} 146(2)^{\circ}$ where (i) is the equivalent position $\frac{1}{2}-x, \frac{1}{2}+y, z$. The hydrophilic groups occupy the regions at z ca $\frac{1}{4}, \frac{3}{4}$ and the chloroethyl side chains are at $z c a 0, \frac{1}{2}, 1$.

Only one of the side chains exhibits an extended conformation $\left[\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{Cl} 2-179.3(1)^{\circ}\right]$ whereas the other is gauche, with $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cll} 58.1(2)^{\circ}$. The corresponding $\mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles are

Fig. 1. The molecule of compound (1) in the crystal. Ellipsoids correspond to 50% probability levels, H -atom radii are arbitrary.

Fig. 2. Packing diagram of compound (1). Radii are arbitrary, H atoms are omitted for clarity. Hydrogen bonds are drawn as broken lines.
101.8 (2) and $-116.1(2)^{\circ}$. The $\mathrm{P}-\mathrm{N}$ bond lengths are $\mathrm{P}-\mathrm{N} 2$ (ring) 1.633 (2) and $\mathrm{P}-\mathrm{N} 1$ (exocyclic) 1.641 (2) \AA. The $\mathrm{C}-\mathrm{Cl}$ bond lengths are $\mathrm{Cll}-\mathrm{C} 5$ 1.789 (2) and $\mathrm{Cl} 2-\mathrm{C} 71.791$ (2) \AA, which may be regarded as normal, and the displacement parameters are in the normal range for low temperature structures.

In conclusion, we may state that cyclophosphamide in its various forms (racemate monohydrate, anhydrous racemate or anhydrous single enantiomers) can adopt differing side-chain conformations and hydro-gen-bonding patterns; the conformational and hydro-gen-bonding energies of different modifications must be very similar, and the presence or absence of water of hydration obviously plays an important role. Furthermore, the incorporation into a regular crystal lattice reduces the tendency to decomposition, which takes place more readily in oily samples by intramolecular alkylation, leading to the bicyclic derivative (2) (Niemeyer et al., 1996; Zon et al., 1977).

We also report here the structure of (2), 1-(2-chloroethyl)tetrahydro- $1 \mathrm{H}, 5 \mathrm{H}$-1,3,2-diazaphospholo[2,1$b][1,3,2]$ oxazaphosphorine 9 -oxide. The molecule of (2) is shown in Fig. 3 [the crystallographic numbering does not correspond to the IUPAC name, but is consistent with the numbering of (1)]. A preliminary report of this structure has appeared as a conference abstract (Niemeyer et al., 1996). The X-ray structure determination confirms the connectivity established by chemical and spectroscopic means (Gilard et al., 1994). The six-membered ring displays the expected chair conformation; the annelation causes no change in torsion angle greater than 3°. The newly formed five-membered ring is in envelope form, with an $\mathrm{N} 2-\mathrm{P}-\mathrm{N} 1-\mathrm{C} 6$ torsion angle of $2.75(12)^{\circ}$. The chloroethyl side chain exhibits a gauche conformation, with $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 60.2(2)^{\circ}$ $c f$. the more usual extended conformation (see above). The $\mathrm{C}-\mathrm{Cl}$ bond length is normal at 1.790 (2) \AA.

Fig. 3. The molecule of compound (2) in the crystal. Ellipsoids correspond to 50% probability levels, H -atom radii are arbitrary.

The major change of bond length upon annelation is for $\mathrm{P}-\mathrm{N} 2$, which is 1.633 (2) \AA in (1) but 1.6593 (14) \AA in (2). Concomitantly, N 2 is pyramidalized (angle sum 339.1°). The angle N1-P-N2 necessarily becomes narrower upon its incorporation into the five-membered ring [from $105.84(8)^{\circ}$ in (1) to $97.36(7)^{\circ}$ in (2)], which is largely accommodated by an increase in $\mathrm{O} 1-\mathrm{P}-\mathrm{N} 1$ from $110.86(8)$ to $117.89(7)^{\circ}$.

The lengthening of the $\mathrm{P}-\mathrm{N} 2$ bond is consistent with the observation that (2) is hydrolysed immediately and exclusively at this bond, forming successively the ninemembered heterocycle (3) and the phosphate monoester (4) (as shown in the reaction scheme). The alternative hydrolysis of P-N1 would lead to compound (5), which is not detected (Gilard et al., 1994; Niemeyer et al., 1996).

The molecular packing of (2) shows no unusually short contacts.

Experimental

Compound (1) was recrystallized from dry diethyl ether. Compound (2) was synthesized according to Zon, Ludeman \& Egan (1977) and recrystallized from diethyl ether.

Compound (1)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$
$M_{r}=261.08$
Orthorhombic
Pbca
$a=9.9062(10) \AA$
$b=9.8380(10) \AA$
$c=24.061$ (3) \AA
$V=2344.9(4) \AA^{3}$
$Z=8$
$D_{x}=1.479 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω-scans
Absorption correction: none

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 64 reflections
$\theta=5-12.5^{\circ}$
$\mu=0.669 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Tablet
$0.85 \times 0.80 \times 0.20 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=27.50^{\circ}$
$h=0 \rightarrow 12$
$k=-12 \rightarrow 8$
$l=0 \rightarrow 31$

4654 measured reflections 2695 independent reflections 2018 observed reflections
$[I>2 \sigma(I)]$
$R_{\text {int }}=0.0331$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0351$
$w R\left(F^{2}\right)=0.0901$
$S=0.971$
2693 reflections
131 parameters
$\mathrm{H}(\mathrm{N})$ atom refined freely, others riding, $\mathrm{C}-\mathrm{H}$ $0.99 \AA$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0503 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	\dot{y}	z	$U_{\text {eq }}$
P	0.38902 (5)	0.15394 (5)	0.32586 (2)	0.01627 (12)
Cl 1	0.18907 (6)	0.23390 (7)	0.45703 (3)	0.0438 (2)
Cl 2	0.64920 (7)	0.54731 (6)	0.41361 (3)	0.0433 (2)
N1	0.4538 (2)	0.1928 (2)	0.38658 (6)	0.0194 (3)
N2	0.3410 (2)	0.2977 (2)	0.29835 (7)	0.0197 (3)
Ol	0.29079 (14)	0.04196 (13)	0.33110 (6)	0.0252 (3)
O 2	0.51383 (13)	0.11429 (13)	0.28774 (5)	0.0213 (3)
Cl	0.3290 (2)	0.3105 (2)	0.23736 (8)	0.0217 (4)
C2	0.4585 (2)	0.2638 (2)	0.20995 (8)	0.0241 (4)
C3	0.4946 (2)	0.1201 (2)	0.22756 (8)	0.0243 (4)
C4	0.4277 (2)	0.1061 (2)	0.43477 (8)	0.0255 (4)
C5	0.3490 (2)	0.1734 (2)	0.48115 (9)	0.0317 (5)
C6	0.5612 (2)	0.2944 (2)	0.39085 (8)	0.0225 (4)
C7	0.5095 (2)	0.4319 (2)	0.41097 (9)	0.0285 (5)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (1)

$\mathrm{P}-\mathrm{O} 1$	$1.4753(14)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.463(2)$
$\mathrm{P}-\mathrm{O} 2$	$1.5881(13)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.478(2)$
$\mathrm{P}-\mathrm{N} 2$	$1.633(2)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.462(2)$
$\mathrm{P}-\mathrm{N} 1$	$1.641(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.514(3)$
$\mathrm{Cl}-\mathrm{C} 5$	$1.789(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.518(3)$
$\mathrm{Cl} 2-\mathrm{C} 7$	$1.791(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.514(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.463(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.526(3)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	$112.29(8)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{P}$	$119.98(13)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 2$	$119.31(8)$	$\mathrm{C} 3-\mathrm{O} 2-\mathrm{P}$	$117.45(11)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 2$	$101.85(8)$	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2$	$109.8(2)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 1$	$110.86(8)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$111.1(2)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 1$	$105.48(8)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$110.11(15)$
$\mathrm{N} 2-\mathrm{P}-\mathrm{N} 1$	$105.84(8)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$114.9(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 6$	$118.1(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 1$	$111.26(15)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{P}$	$120.04(13)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$112.6(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{P}$	$120.41(13)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{Cl} 2$	$108.33(14)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 1-\mathrm{C} 4$	$9.3(2)$	$\mathrm{N} 1-\mathrm{P}-\mathrm{O} 2-\mathrm{C} 3$	$-159.45(13)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 1-\mathrm{C} 4$	$-112.46(15)$	$\mathrm{P}-\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2$	$-52.0(2)$
$\mathrm{N} 2-\mathrm{P}-\mathrm{N} 1-\mathrm{C} 4$	$140.07(15)$	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$55.5(2)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 1-\mathrm{C} 6$	$175.43(13)$	$\mathrm{P}-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$60.6(2)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 1-\mathrm{C} 6$	$53.6(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$-60.4(2)$
$\mathrm{N} 2-\mathrm{P}-\mathrm{N} 1-\mathrm{C} 6$	$-53.8(2)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$77.4(2)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 2-\mathrm{Cl}$	$-78.6(2)$	$\mathrm{P}-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$-116.1(2)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 2-\mathrm{Cl}$	$45.7(2)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl1}$	$58.1(2)$
$\mathrm{N} 1-\mathrm{P}-\mathrm{N} 2-\mathrm{Cl}$	$155.72(14)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$-91.8(2)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2-\mathrm{C} 3$	$79.69(14)$	$\mathrm{P}-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$101.8(2)$
$\mathrm{N} 2-\mathrm{P}-\mathrm{O} 2-\mathrm{C} 3$	$-49.12(14)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{Cl} 2$	$-179.29(13)$

Compound (2)

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{P}$
$M_{r}=224.62$
Monoclinic
$P 2_{1} / n$
$a=10.580(2) \AA$
$b=10.021$ (2) \AA
$c=10.779(2) \AA$
$\beta=118.95(2)^{\circ}$
$V=1000.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer
ω / θ-scans
Absorption correction:
none
2012 measured reflections
1764 independent reflections
1681 observed reflections
$[I>2 \sigma(I)]$

$$
\begin{aligned}
& R_{\text {int }}=0.0136 \\
& \theta_{\max }=25.04^{\circ} \\
& h=0 \rightarrow 12 \\
& k=-11 \rightarrow 1 \\
& l=-12 \rightarrow 11 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.293 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.302 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction:

SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0223 (17)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for (2)

	x	y	z	$U_{\text {eq }}$
P	0.26115 (4)	0.45935 (4)	0.59559 (4)	0.0215 (2)
Cl	0.31770 (6)	0.07054 (5)	0.46014 (6)	0.0435 (2)
Ol	0.27983 (14)	0.45715 (12)	0.73967 (12)	0.0309 (3)
O2	0.41448 (12)	0.46983 (11)	0.60014 (12)	0.0274 (3)
NI	0.17690 (14)	0.33446 (13)	0.49115 (13)	0.0245 (3)
N2	0.16172 (15)	0.58055 (13)	0.48746 (14)	0.0244 (3)
Cl	0.2351 (2)	0.7103 (2)	0.5084 (2)	0.0306 (4)
C2	0.3825 (2)	0.6996 (2)	0.5160 (2)	0.0337 (4)
C3	0.4785 (2)	0.6026 (2)	0.6295 (2)	0.0323 (4)
C4	0.1535 (2)	0.2104 (2)	0.5469 (2)	0.0269 (4)
C5	0.1507 (2)	0.0898 (2)	0.4626 (2)	0.0287 (4)
C6	0.0617 (2)	0.3804 (2)	0.3527 (2)	0.0290 (4)
C7	0.0917 (2)	0.5273 (2)	0.3415 (2)	0.0305 (4)

Table 4. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (2)

$\mathrm{P}-\mathrm{O} 1$	$1.4678(12)$	$\mathrm{NI}-\mathrm{C} 6$	$1.471(2)$
$\mathrm{P}-\mathrm{O} 2$	$1.6026(12)$	$\mathrm{N} 2-\mathrm{Cl}$	$1.475(2)$
$\mathrm{P}-\mathrm{N} 1$	$1.6299(14)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.477(2)$
$\mathrm{P}-\mathrm{N} 2$	$1.6593(14)$	$\mathrm{Cl}-\mathrm{C} 2$	$1.525(3)$

$\mathrm{Cl}-\mathrm{C} 5$	$1.790(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.507(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.457(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.504(2)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.453(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.523(3)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	$110.66(7)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7$	$115.90(14)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 1$	$117.89(7)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{P}$	$115.47(11)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 1$	$106.17(7)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{P}$	$107.74(11)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 2$	$117.98(7)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$113.29(14)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 2$	$105.17(7)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	$111.01(15)$
$\mathrm{N} 1-\mathrm{P}-\mathrm{N} 2$	$97.36(7)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$110.68(14)$
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{P}$	$115.08(10)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$113.29(13)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 6$	$117.64(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl}$	$111.38(12)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{P}$	$121.13(11)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$106.32(13)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{P}$	$111.59(11)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$106.29(13)$

The crystals of compound (1), although large, were mostly of poor quality and invariably shattered on attempts to cut them. We therefore used a crystal that may have been larger than the homogeneous beam area.
For compound (2), the crystal was also large. Furthermore, a referee has drawn our attention to the fact that absorption corrections might have been desirable (calculated systematic errors are ca 10%). In priniciple he is correct, although for compound (1) the wide and irregular reflection profiles would have militated against successful ψ scans. It is possible that the U values may be systematically affected to some extent by the factors mentioned here. However, we have campaigned for, rather than against, the use of large crystals (Jones, 1995).

Data collection: XSCANS (Siemens, 1994a) for (1); DIF4 (Stoe \& Cie, 1991a) for (2). Cell refinement: XSCANS for (1); DIF4 for (2). Data reduction: XSCANS for (1); REDU4 (Stoe \& Cie, 1991b) for (2). For both compounds, program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: XP (Siemens, 1994b); software used to prepare material for publication: SHELXL93.

We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1178). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Adamiak, D. A., Kinas, R., Saenger, W. \& Stec, W. J. (1977a). Angew. Chem. 89, p. 336.
Adamiak, D. A., Kinas, R., Saenger, W. \& Stec, W. J. (1977b). Z. Naturforsch. Teil C, 32, 672-677.
Brock, N. (1989). Cancer Res. 49, 1-7.
Clardy, J. C., Mosbo, J. A. \& Verkade, J. G. (1972). J. Chem. Soc. Chem. Commun. pp. 1163-1164.
Clardy, J. C., Mosbo, J. A. \& Verkade, J. G. (1974). Phosphorus, 4, 151-156.
García-Blanco, S. \& Perales, A. (1972). Acta Cryst. B28, 2647-2652.
Gilard, V., Martino, R., Malet-Martino, M.-C., Kutscher, B., Müller, A., Niemeyer, U., Pohl, J. \& Polymeropoulos, E. E. (1994). J. Med. Chem. 37, 3986-3993.
Jones, P. G. (1995). Z. Kristallogr. 210, 215-219.
Karle, I. L., Karle, J. M., Egan, W., Zon, G. \& Brandt, J. A. (1977). J. Am. Chem. Soc. 99, 4803-4807.

Niemeyer, U., Kutscher, B., Engel, J., Neda, I., Fischer, A., Schmutzler, R., Jones, P. G., Malet-Martino, M.-C., Gilard, V. \& Martino, R. (1996). Phosphorus Sulfur Silicon. 109/110, 473-476.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). XSCANS. X-ray Crystal Structure Analysis Package. Version $2.10 b$. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
Siemens (1994b). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
Stoe \& Cie (1991a). DIF4. Diffractometer Control Program. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1991b). REDU4. Data Reduction Program. Stoe \& Cie, Darmstadt, Germany.
Zon, G., Ludeman, S. M. \& Egan, W. (1977). J. Am. Chem. Soc. 99, 5785-5795.

Acta Cryst. (1996). C52, 2363-2365

Coumarin 338

Teruyuki Honda, ${ }^{a}$ Isao Fum, ${ }^{a}$ Noriaki Hirayama, ${ }^{a *}$ Norihto Aoyama ${ }^{b}$ and Akira Mike ${ }^{b}$
${ }^{a}$ Department of Biological Science and Technology, Tokai University, 317 Nishino, Numazu, Shizuoka 410-03, Japan, and ${ }^{b}$ Research Laboratories, Kyowa Medex Co Ltd, 6001 Minami-Ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka 411, Japan

(Received 18 September 1995; accepted 29 March 1996)

Abstract

In the title compound, 1,1-dimethylethyl 2,3,6,7-tetrahydro-11-oxo- $1 \mathrm{H}, 5 \mathrm{H}, 11 \mathrm{H}$-[1]benzopyrano[6,7,8-ij]-quinolizine-10-carboxylate, $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$, the coumarin moiety is approximately planar. The two piperidine rings have sofa conformations and one is disordered. The N atom adopts a planar configuration and the carboxyl group is out of the coumarin plane.

Comment

The title compound, (I), (Eastman Kodak Co., Rochester, NY, USA) is used as an efficient laser dye. Derivatives with a structurally rigid amino group such as the title compound have been reported to show high quantum yields of fluorescence in polar solvents (Reynolds \& Drexhage, 1975). The crystal structure

(I)

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1225). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

